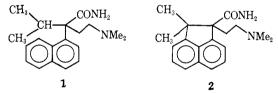
$(MgSO_4)$, and the solvent was removed to yield 1.28 g of 25, a vellowish oil, ir (neat) 2110 cm⁻¹ (azide). A soln of LAH (0.570, 15.0 mmoles) in 25 ml of anhyd Et₂O was refluxed for 2 hr after which the crude azide 25 in 50 ml of anhyd Et₂O was added at such a rate as to maintain reflux. The reaction mixt was refluxed for 2 hr after which "wet" Et_2O followed by H_2O was added to decomp the excess LAH. The aq layer was extd several times with Et_2O and the combined Et_2O fractions were washed with H₂O and satd NaCl soln and dried (MgSO₄), and the solvent was removed to yield a colorless oil, 1.525 g. Chromatog on silica gel, eluting with 5% MeOH-CHCl₃, afforded a colorless oil, 0.850 g. Formation of the HCl salt and recrystn (EtOH-Et₂O) afforded 0.567 g (51%) of 23, mp 132-134°

eruthro-2-Amino-3-(3.4-dihydroxyphenyl)butane · HCl (3).— To erythro-2-amino-3-(3,4-dibenzyloxyphenyl)butane HCl (23) (0.200 g, 0.5 mmole) in 5 ml of anhyd MeOH was added 50 mg of 10%~Pd/C under $N_2.~$ The reaction mixt was hydrogenated at 25° under 1 atm of H₂. The reaction was stopped after consumption of the theoretical amt of H2. The catalyst was removed by filtration and the solvent was removed in vacuo. The resulting solid was crystd (MeOH-Et₂O) to yield 83 mg (79%) of 3: mp 254-258°; nmr CD₃OD & 6.83-6.63 (m, 3 H, arom), 3.39 (m, 3 H, C-2 CH), 2.85 (m, 1 H, C-3 CH), 1.35 (d, 3 H, C-1 CH₃), 1.15 (d, 3 H, C-4 CH₂). Anal. (C₁₀H₁₆ClNO₂) C, H,

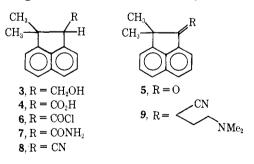
Acknowledgment.—The authors gratefully acknowledge support of this project by National Institutes of Health Grant He-08555. The authors wish to express their appreciation to Drs. C. R. Creveling and L. Cohen, Laboratory of Chemistry, National Institute of Arthritis and Metabolic Diseases, Bethesda, Md., for their assistance in securing the biological data reported herein and for the use of the laboratory facilities during the later stages of this problem.

Acenaphthene Chemistry. 2. Synthesis and Antiinflammatory Activity of 1-[2-(Dimethylamino)ethyl]-2,2-dimethyl-1-acenaphthenecarboxamide¹


INGEBORG T. HARPER AND SEYMOUR D. LEVINE*

The Squibb Institute for Medical Research, New Brunswick, New Jersey 08903

Received January 11, 1971


The synthesis and antiinflammatory activity of 1-[2-(dimethylamino)ethyl]-2,2-dimethyl-1-acenaphthenecarboxamide (2) are presented. The nature of the products obtained during attempted cyanide displacement reactions on 1-bromo-2,2-dimethylacenaphthene (14) under a variety of conditions is described.

The synthesis and antiinflammatory activity of α $isopropyl-\alpha$ -[2-(dimethylamino)ethyl]-1-naphthylacetamide (1) has been reported.² If one envisions formation of a bond between the central C atom of the sidechain *i*-Pr group and the C-8 position of the naphthalene ring of 1, then the acenaphthene 2 is derived. In this paper, we describe the synthesis and antiinflammatory activity of this "bridged" compound, as well as the chemistry of some intermediates.

Our successful approach utilized the alcohol 3 as starting material.³ Sarett⁴ or Cornforth oxidation⁵ of 3 led to the recovery of 3 as the major product. MnO_2 (active) oxidation⁶ of **3** gave a mixture of **3** and the ketone $5.^{3}$ Oxidation of 3 with Jones reagent⁷ gave the carboxylic acid 4, along with 5. The ketone may arise from oxidative cleavage of the benzylic C-C bond of 3 or by further oxidation of 4. The acid was converted into a nitrile (8) in the usual manner, and then

alkylated with dimethylaminoethyl bromide to give 9. When 9 was treated under the same drastic acidic conditions employed for the hydrolysis of the corresponding nitrile in the synthesis of $1,^2$ a multicomponent mixture (6 spots, tlc) was obtained in 25% yield. Attempted hydrolysis of 9 with H₂O₂ in NH₄OH was also unsuccessful.⁸ While PPA is an excellent reagent for the hydrolysis of unhindered aromatic nitriles, it has been found unsuitable for use with sterically hindered nitriles.9 Nevertheless, exposure of our hindered nitrile **9** to PPA gave the amide $\bar{\mathbf{2}}$ in over 70% yield.

We had originally sought to prepare 8 in a more direct manner by displacement of a suitable acenaphthyl derivative with CN^{-} . Reduction of 5 with $NaBH_4$ gave the alcohol 10 that was treated with TsCl in pyridine to afford 11. The formation of such salts from aryl carbinols and allylic hydroxy steroids has been reported recently.^{10,11} Treatment of 10 with TsCl in DMF

⁽¹⁾ For part 1, see A. I. Cohen, I. T. Harper, and S. D. Levine, Chem. Commun., 1610 (1970).

⁽²⁾ S. Casadio, G. Pala, T. Bruzzese, E. Crescenzi, E. Marazzi-Uberti, and G. Coppi, J. Med. Chem., 8, 594 (1965).

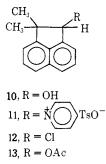
⁽³⁾ A. Bosch and R. K. Brown, Can. J. Chem., 46, 715 (1968).

⁽⁴⁾ G. I. Poos, G. E. Arth, R. E. Beyler, and L. H. Sarett, J. Amer. Chem.

Soc., 75, 422 (1953), (5) R. H. Cornforth, J. W. Cornforth, and G. Popjak, Tetrahedron, 18, 1351 (1962).

⁽⁶⁾ I. T. Harrison, Proc. Chem. Soc., 110 (1964).

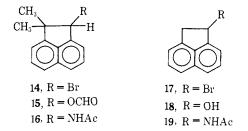
⁽⁷⁾ A. Bowers, T. G. Halsall, E. R. H. Jones, and A. J. Lemin, J. Chem. Soc., 2555 (1953).


⁽⁸⁾ R. L. Tolman, R. K. Robins, and L. B. Townsend, J. Amer. Chem. Soc., 91, 2102 (1969).

⁽⁹⁾ H.R. Snyder and C. T. Elston, *ibid.*, **76**, 3039 (1954).

⁽¹⁰⁾ K. L. Nagpal, P. C. Jain, P. D. Srivastava, M. M. Dhar, and N. Anand, Indian J. Chem., 6, 762 (1968).

⁽¹¹⁾ S. B. Laing and P. J. Sykes, J. Chem. Soc. C, 421 (1968).


afforded the chloro compound 12, while reaction with 80% AcOH gave the acetate 13 without any rearrangement to 1,2-dimethylacenaphthylene. Treatment of 13 with KCN in refluxing MeCN, KCN in DMF at 110°, or NaCN in refluxing DMF all led to recovery of starting material.

We next investigated cyanide displacement reactions on the bromo compound 14 prepared from 10 with PBr₃. Treatment of 14 under the conditions used for the highyield conversion of 1-bromobenzocyclobutene to 1cyanobenzocyclobutene, 12 did not afford 8, but 5 and 10 were isolated after chromatography. The ketone 5 is thought to arise by Kornblum oxidation¹³ of 14. The isolation of **10** is not surprising, since chromatography of pure 14 on silica gel results in its reconversion, in part, to 10. This product may also arise by simple hydrolysis of 14 during the reaction itself (see below). The alcohol 10 and the formate ester 15 were isolated by chromatography from the reaction of 14 with NaCN in DMF. The reaction of steroidal tosylates with DMF to afford formates has been reported.^{14,15} When 14 was refluxed with NaCN in MeCN for an extended period, a product more polar than either 10 or 14 slowly accumulated. Preparative tlc gave an amide formulated as 16 in 40% yield along with 10. Subsequent experiments showed that this reaction takes place in MeCN alone as well, but that no 16 is formed from the reaction of 10 with NaCN in MeCN. Thus, the reaction resembles a Ritter reaction in an overall fashion, though no acid is present. Reaction of 10 under Ritter conditions proceeded as expected to give 16. The reaction of 17¹⁶ with NaCN in MeCN has been reported to give the alcohol 18^{17} as the main product.¹⁸ We were curious to determine whether an amide analogous to 16 was also formed in this reaction. Reaction of 17 with NaCN in MeCN gave 18 as the major product, along with a small amount (ca. 1%) of 1-acetamidoacenaphthene (19).¹⁹ The greater yield of amide obtained in the 2,2-dimethylacenaphthene series probably reflects the increased stability of the corresponding carbonium ion (carbonium ion like intermediate).

Antiinflammatory Activity.20-The compounds were

- (12) M. P. Cava, R. L. Litle, and D. R. Napier, J. Amer. Chem. Soc., 80, 2257 (1958).
- (13) N. Kornblum, W. J. Jones, and G. J. Anderson, *ibid.*, **81**, 4113 (1959).
- (14) F. C. Chang and R. T. Blickenstaff, *ibid.*, **80**, 2906 (1958).
- (15) R. T. Blickenstaff and E. L. Foster, J. Org. Chem., 26, 2883 (1961).
 (16) W. E. Bachmann and J. C. Sheehan, J. Amer. Chem. Soc., 63, 204
- (1941). (17) J. F. Firmand J. Ch. et al. (20, 430 (1010))
- (17) L. F. Fieser and J. Cason., *ibid.*, **62**, 432 (1940).
 (18) M. Julia and M. Baillarge, *Bull. Soc. Chim. Fr.*, 1065 (1952)
- (19) H. Lettre and M. Stratmann, Hoppe-Seyler's Z. Physiol. Chem., 288, 25 (1951).
- (20) Modification of the method described by C. A. Winter, E. A. Risley, and G. W. Nuss, Proc. Soc. Exp. Biol. Med., 111, 544 (1962).

administered orally as a suspension in 1% CMC to prestarved (16–18 hr), 180–200 g, young adult male Sprague–Dawley rats, that were allowed H₂O *ad libitum*. Two hours later, the left hind paw vol was measured by Hg displacement and 0.05 ml of a 1% soln of carrageenin in sterile pyrogen-free 0.9% NaCl soln was injected into the paw. Three hours later the vol of the paw was again measured by Hg displacement.

A 150 mg/kg dose of 2 inhibited carrageenin-induced edema by 56% and 40% in 2 separate tests. A 6 mg/kg dose of indomethacin generally inhibits edema by 50 \pm 10% in this assay.

Experimental Section

Melting points were taken on a Thomas-Hoover capillary mp apparatus. Ir spectra were detd using Perkin-Elmer IR-137 and IR-21 spectrometers, and mmr spectra on a Varian A-60 spectrometer in CDCl₈ (Me₄Si). All org solns were dried (Na₂-SO₄) and all evapus carried out *in vacuo*. Silica gel HF-254 and alumina (Merck, AG, neutral) were used for chromatogr and the compds were detected by uv. Where analyses are indicated only by the symbols of the elements, anal. results obtd for those elements were within 0.4% of the theoretical values; IPE = isopropyl ether.

Oxidation of 2,2-Dimethyl-1-hydroxymethylacenaphthene (3).³ — A soln of 3 (70.9 g) in Me₂CO (3.55 l.) was cooled to -5° in an Me₂CO–Dry Ice bath, and treated rapidly with 355 ml of Jones reagent through a dropping funnel. When the addn was complete ($T = 13^{\circ}$), MeOH was added and the resulting green suspension was filtered through Hy-Flo. The filtrate was evapland the residue was dissolved in CHCl₃ and washed with H₂O. The CHCl₃ soln was extd with 10% aq NaOH, washed with 8% NaCl soln, dried, and evapd to give 5° (27.9 g), which was identified by ir and tlc (silica gel-CHCl₃).

The alk exts were acidified with concd HCl and extd with CHCl₃. The CHCl₃ exts were washed with 8% NaCl soln, dried, and evapd to give the crude acid (4, 31.7 g), which was suitable for conversion to the acid chloride. A small portion of 4 was distd *in vacuo* (tube to tube) to afford a slightly yellow oil: nnnr τ 8.57 (s, 2-CH₃), 8.35 (s, 2-CH₃), 5.68 (s, 1-H), and -0.2 (broad s, 1-CO₃H).

2,2-Dimethyl-1-acenaphthenecarboxamide (7).—A solu of the crude acid (4, 680 mg) in SOCl₂ (5 ml) was refluxed for 1 hr and evapd; the residue was then dissolved in CHCl₃ (10 ml) and treated with NH₃ for 5 min. The reaction mixt was washed with H₂O and S% NaCl soln, dried, and evapd. Plate chromatogr of the residue on silica gel using EtOAc as the developing solvent gave a major band that was eluted with EtOAc. Evapu and erystn from Et₂O-IPE gave 7 in two polymorphic forms: 208 mg (mp 108–110°) and 57 mg (mp 122.5–124.5°). Recrystu from Me₂CO-IPE gave the anal. sample: mp 108–110°; unir 7 8.53 (s, 2-CH₃), 8.39 (s, 2-CH₃), and 5.82 (s, 1-H). Anal. (C₁₀H₁₅NO): C, H, N.

2,2-Dimethyl-1-acenaphthenecarbonitrile (8).—A mixt of **7** (9.25 g) and P_2O_5 (20 g) in PhCH₃ (500 ml) was refluxed for 1.75 hr and cooled, then the PhCH₃ was decanted. The residue was dissolved in H₂O and extd with CHCl₃. The exts and toluene fraction were combined, washed with 8% NaCl soln, dried, and evapt to give **8** (8.0 g) as an oil. A small portion of **8** was distd (tube to tube) at 100° (0.25 mm) to afford the anal. sample: nmr τ 8.41 (s, 2-CH₃), 8.38 (s, 2-CH₃), and 5.63 (s, 1-H). Anal. (C₁₅H₁₃N): C, H, N.

1-[2-(Dimethylamino)ethyl]-2,2-dimethyl-1-acenaphthenecarbonitrile (9).—A mixt of 8 (2.85 g) and NaH (650 mg) in DMF (20 ml) was stirred under N₂ for 1 hr. A solu of dimethylaminoethyl bromide (2.62 g) in PhCH₃ (75 ml) was added and the reaction mixt was stirred overnight under N₂. It was poured into H₂O, the PhCH₃ sepd and the aq portion was extd with Et₂O The combined org layers were extd with 2 N HCl. The acidic fraction was made alk with 10% aq NaOH and extd with Et₂O. The Et₂O exts were washed with 8% NaCl soln, dried, and evapd to give **9** (2.89 g) as an oil. A small portion of **9** was distd (tube to tube) at 140° (0.10 mm) to give a viscous oil that was crystd from petr ether to afford the anal. sample: mp 69–70°; nmr τ 8.49 (s, 2-CH₃), 8.42 (s, 2-CH₃) and 7.91 (s, Me₂N). Anal. (Cl₁₉H₂₂N₂): C, H, N.

1-[2-(Dimethylamino)ethyl]-2,2-dimethyl-1-acenaphthenecarboxamide (2).—A mixt of 9 (5.21 g) and PPA (150 ml) was stirred vigorously (blade) for 1.5 hr in a preheated 120° oil bath. The mixt was poured into ice water and made alk with KOH pellets. The alk soln was extd with Et₂O, and the Et₂O exts were washed with 8% NaCl soln, dried, and evapd. The oil was distd (210-230°) *in vacuo* to give 2 (4.0 g), which solidified on standing (mp 61-63°). The anal. sample was prepd by distn (tube to tube) at 180° (0.17 mm): nmr τ 8.74 (s, 2-CH₃), 8.37 (s, 2-CH₃), and 7.87 (s, Me₂N). Anal. (C₁₉H₂₄N₂O): C, H, N.

2,2-Dimethyl-1-acenaphthenol (10).—A soln of 5^3 (4.2 g) in MeOH (50 ml) was cooled in an ice bath and treated with NaBH₄ (1.3 g). It was stirred at room temp for 2.5 hr, treated with AcOH, concd, and dild with H₂O. The aq phase was extd with CHCl₃, and the exts were washed with 8% NaCl soln, dried, and evapd. The residue was crystd from Et₂O-hexane to give 10 (3.48 g, mp 87-88°). Recrystn from Et₂O-hexane gave the anal. sample: mp 89-90°; nmr τ 8.63 (s, 2-CH₃), 8.55 (s, 2-CH₃), 8.18 (s, 1-OH), and 4.80 (s, 1-H). Anal. (Cl₄H₁₄O): C, H.

1-(2,2-Dimethyl-1-acenaphthenyl)pyridinium Tosylate (11).— A soln of 10 (355 mg) and TsCl (355 mg) in pyridine (5 ml) was left at room temp overnight. The mixt was dild with H₂O and extd with CHCl₃. The CHCl₃ exts were washed with 8% NaCl soln, dried, and evapd. Crystn of the residue from Me₂CO gave 11 (254 mg, mp 191.5–192.5° dec). The anal. sample was prepd by recrystn from Me₂CO: mp 193–194° dec; nmr τ 9.05 (s, 2-CH₃), 8.39 (s, 2-CH₃), and 7.72 (s, CH₃C₆H₄). Anal. (C₂₆H₂₅NO₃S): C, H, N, S.

1-Chloro-2,2-dimethylacenaphthene (12).—A soln of 10 (500 mg) and TsCl (525 mg) in DMF (5 ml) was left at 60° overnight, dild with H₂O, and extd with CHCl₃. The CHCl₃ exts were washed with satd NaHCO₃ soln and 8% NaCl soln, dried, and evapd. Plate chromatogr of the residue on silica gel, utilizing CHCl₃ as the developing solvent, gave two bands. Elution of the more polar band with EtOAc and evapn gave 10 (210 mg, ir). This hydrolysis took place during chromatogr. The less polar band was eluted with EtOAc and evapd to give 12 (180 mg) as an oil. The anal. sample was prepd by distn (tube to tube) at 100° (0.15 mm): nmr τ 8.52 (s, 2-CH₃) and 4.57 (s, 1-H); mass spectra, M⁺ = 216. Anal. (Cl₄H₁₃Cl): C, H.

2,2-Dimethyl-1-acenaphthenol Acetate (13).—A soln of 10 (70 mg) in 80% AcOH (5 ml) was refluxed for 6.5 hr, dild with H₂O, and extd with CHCl₃. The CHCl₃ exts were washed with 8% NaCl soln, dried, and evapd. Plate chromatogr of the residue on silica gel, using CHCl₃ as the developing solvent, and elution of the least polar band with EtOAc after evapn gave 13 (40 mg) as an oil. Tube-to-tube distn at 100° (0.01 mm) gave the anal. sample: nmr τ 8.60 (s, 2-CH₃), 8.50 (s, 2-CH₃), 7.85 (s, OAc), and 3.63 (s, 1-H). Anal. (C₁₆H₁₆O₂): C, H.

1-Bromo-2,2-dimethylacenaphthene (14).—A mixt of 10 (1.0

g) and PBr₃ (0.2 ml) in Et₂O (10 ml) was left at room temp overnight, satd NaHCO₃ soln was added, and the Et₂O layer was sep. The Et₂O layer was washed with 8% NaCl soln, dried, and evapd to give 14 (1.0 g) as an oil. Tube-to-tube distn at 100° (0.2 mm) gave the anal. sample: nmr τ 8.55 (s, 2-CH₃), 8.42 (s, 2-CH₃), and 4.38 (s, 1-H). Anal. (C₁₄H₁₃Br): C. H. Br.

100 (0.2 km) gate the tail start start of the trianglet in the 16 berlin problem of the trianglet in trianglet in the trianglet in trianglet in

1-Acetamido-2,2-dimethylacenaphthene (16).—(A) A mixt of 14 (0.52 g) and NaCN (0.3 g) in MeCN (15 ml) was refluxed for 5 days, dild with CHCl₃, washed with 8% NaCl soln, dried, and evapd. Plate chromatogr of the residue on silica gel, using CHCl₃ as the developing solvent, gave 2 bands more polar than 14. Elution of the less polar band with EtOAc and evapn gave 10 (47 mg, ir). The more polar band was extd with EtOAc and evapd to give 16 (270 mg). Crystn from IPE-Me₂CO gave 193 mg, mp 129-130°. The anal. sample was prepd by recrystn from IPE: mp 130-131°; nmr τ 8.72 (s, 2-CH₃), 8.43 (s, 2-CH₃), 7.93 (s, 1-NAc), and 4.30 (s, 1-H). Anal. (C₁₅H₁₇NO): C, H, N.

(B) A soln of 14 (1.1 g) in MeCN (50 ml) was refluxed for 3 days and evapd. The dark residue was dissolved in 10 ml of PhH-CHCl₃ (3:1) and added to a 30-g, dry-packed alumina column. The column was eluted with PhH-CHCl₃ (1:1) and CHCl₃. An initial orange-colored band was discarded. The amide-contg fractions were combined, evapd, and crystd from Et_2O -hexane to afford 16 (538 mg, mp 130-131°).

(C) A soln of 10 (1.0 g) in MeCN (10 ml) was treated dropwise with concd H_2SO_4 (3.0 ml) while being stirred. The mixt was then stirred for 70 min, poured into H_2O , and extd with CHCl₃. The CHCl₃ exts were washed with satd NaHCO₃ soln and 8% NaCl soln, dried, and evapd. The residue was purified by alumina chromatogr as described above to give 16 (650 mg, mp 130-131°).

1-Acetamidoaconaphthene (19).—A mixt of 17 (2.32 g) and NaCN (1.54 g) in MeCN (77 ml) was refluxed for 10 days, dild with CHCl₃, and decanted, leaving an insol residue. The org fraction was washed with 8% NaCl soln, dried, and evapd to give a 1.06-g residue. Plate chromatogr of a 500-mg portion on silica gel, using CHCl₃ as the developing solvent, gave two bands. The less polar band was eluted with EtOAc and evapd; the residue crystd from Et₂O to give 18^{17} (221 mg, mp 143–145°). Elution of the more polar band with EtOAc, followed by evap, and crystn of the residue from Me₂CO, gave 19^{18} (14 mg, mp 201– 202.5°).

Acknowledgment.—The authors wish to thank Mr. R. Turkheimer and Dr. R. C. Millonig for the biological data, Dr. A. I. Cohen for the nmr and mass spectra, and Mr. J. Alicino and his staff for microanalyses.